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We study the finite-sample performance of test statistics in linear regression models where the error
dependence is of unknown form. With an unknown dependence structure, there is traditionally a trade-off
between the maximum lag over which the correlation is estimated (the bandwidth) and the amount of
heterogeneity in the process. When allowing for heterogeneity, through conditional heteroskedasticity, the
correlation at far lags is generally omitted and the resultant inflation of the empirical size of test statistics
has long been recognized. To allow for correlation at far lags, we study the test statistics constructed under
the possibly misspecified assumption of conditional homoskedasticity. To improve the accuracy of the test
statistics, we employ the second-order asymptotic refinement in Rothenberg [Approximate power functions
for some robust tests of regression coefficients, Econometrica 56 (1988), pp. 997–1019] to determine the
critical values. The simulation results of this paper suggest that when sample sizes are small, modelling
the heterogeneity of a process is secondary to accounting for dependence. We find that a conditionally
homoskedastic covariance matrix estimator (when used in conjunction with Rothenberg’s second-order
critical value adjustment) improves test size with only a minimal loss in test power, even when the data
manifest significant amounts of heteroskedasticity. In some specifications, the size inflation was cut by
nearly 40% over the traditional heteroskedasticity and autocorrelation consistent (HAC) test. Finally, we
note that the proposed test statistics do not require that the researcher specify the bandwidth or the kernel.
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1. Introduction

When forming test statistics for coefficients in linear regression models, it has become widely
accepted to use the Newey–West covariance estimator to account for error serial correlation.
The appeal of the Newey–West method [1] is that it allows for conditional heteroskedasticity,
although at the cost of only admitting serial correlation at near lags. The inability to account for
serial correlation at far lags leads to test statistics with empirical sizes that far exceed nominal
sizes. To address this problem, Kiefer and Vogelsang [2] refine the asymptotic theory to more
accurately model the admission of serial correlation at far lags. As Kiefer and Vogelsang show
that the resultant non-Gaussian critical values increase with the admitted lag length, the desire to
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730 J. Erb and D.G. Steigerwald

accommodate both conditional heteroskedasticity and correlation at far lags carries its own cost of
considerably lengthening confidence intervals. In an effort to reduce this cost, we adjudge whether
modelling the heteroskedasticity is secondary to accounting for dependence. To do so, we compare
the performance of test statistics that allow for conditional heteroskedasticity with test statistics
constructed under the (possibly) misspecified assumption of conditional homoskedasticity.

Driven by the desire to allow for general dependence in economic time series, White and
Domowitz [3] develop a consistent standard error estimator under conditional heteroskedasticity.
The key condition is that the maximum lag over which the serial correlation is estimated, the
bandwidth, is an asymptotically negligible fraction of the sample size. Although the White–
Domowitz estimator is consistent, it is not guaranteed to be positive definite. In response, Newey
and West demonstrate that the introduction of a kernel that downweighs correlations as the lag
length grows ensures that the consistent standard error estimator is also positive semi-definite.

With every solution, there comes another problem. While the Newey–West estimator is consis-
tent and positive semi-definite, the estimated standard errors are often too small. As Andrews [4]
demonstrates, if the errors exhibit substantive temporal dependence, then test statistics formed
from the Newey–West standard error estimates have empirical size far in excess of nominal size
(test statistics that reject too often). To mitigate size distortion, Andrews and Monahan [5] pro-
pose a two-step method, in which the first step consists of prewhitening the residuals by fitting a
low-dimension process (such as a VAR(1)) to capture serial correlation at far lags. In the second
step, the conditional heteroskedasticity is estimated at near lags.

Prewhitening the residuals prior to estimating conditional heteroskedasticity at near lags goes
part way to resolving the problem of test over-rejection. In an effort to make further improvements,
Kiefer and Vogelsang suggest forgoing the first-step prewhitening and estimating the conditional
heteroskedasticity directly at both near and far lags. When including correlation at far lags, it is no
longer tenable to assume that the bandwidth is an asymptotically negligible fraction of the sam-
ple size. In consequence, the (first-order) asymptotic distribution of resultant test statistics is not
Gaussian. The alternative asymptotic distribution delivers simulated critical values that are con-
siderably larger than their Gaussian counterparts. If only serial correlation at near lags is admitted,
then the refined asymptotic critical values deliver size improvements in line with the improvements
obtained by prewhitening. If serial correlation at all lags is admitted (note that the theory does
not deliver an optimal bandwidth), then there are substantial further reductions in empirical size.

A key insight in previous research is the need to account for serial correlation at far lags to obtain
more accurate coverage probabilities. Current methods to account for correlation at far lags are
either completely general, as in Kiefer and Vogelsang, or specific, as in Andrews and Monahan.1

While Kiefer and Vogelsang allow for conditional heteroskedasticity of unknown form, the cost
is longer confidence intervals resulting in loss of power for associated test statistics. The low-
dimension parametric method of Andrews and Monahan produces confidence intervals of more
moderate length, but still suffers from high empirical size. It is therefore of interest to study
methods that lie between the two, to adjudge the trade-off between size and power.

In contrast to Kiefer and Vogelsang, we propose broadening the first step of Andrews and
Monahan by fitting a high-dimension process to capture serial correlation at all lags, while forgoing
the second-step conditional heteroskedasticity estimation. The assumption underlying the method
is that standard errors can be well approximated by a conditionally homoskedastic covariance
matrix that is band diagonal. The band diagonals are not restricted to be related through a low-
dimension process. To obtain size improvements, we too rely on asymptotic refinements, namely
the second-order theory of Rothenberg [12]. The second-order theory yields critical values that
adjust to incorporate the behaviour of the regressors.2 As Rothenberg establishes, the bandwidth
need not be an asymptotically negligible fraction of the sample size, so all correlation lags are
included under conditional homoskedasticity. Further, the estimator is positive semi-definite by
construction without need of a kernel.
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We study the size and size-adjusted power of test statistics constructed under the three methods.
We focus not only on hypothesis tests of a single parameter, but also on tests of multiple parameters
to determine the impact of off-diagonal elements of the estimated covariance matrix. In Section 2,
we present the quantities of interest and the models to be simulated. The conditional heteroskedas-
ticity specifications allow us to investigate an additional observation in Rothenberg: namely, that
the degree of correlation between the regressor under test and the conditional heteroskedasticity
plays a key role in the empirical size. We examine the range of models typically used to assess
the performance of confidence intervals under conditional heteroskedasticity. Results from the
simulations are contained in Section 3. We provide an empirical application to the estimation
techniques in Section 4.

2. Covariance estimators

To determine the finite-sample size and size-adjusted power of hypothesis tests constructed
under the (potentially misspecified) assumption of conditional homoskedasticity, we employ a
simulation model. Our simulation model is

Yt = X′
tβ + Ut t = 1, . . . , n, (1)

where Xt and β are k × 1 vectors. To allow for comparison with the findings in both Andrews as
well as Andrews and Monahan, we set k = 5 where Xt contains a constant and four regressors.
Conditional heteroskedasticity is introduced through a scale parameter that depends equally on
each of the varying regressors

Ut = |X′
t ζ | × Ũt ,

where ζ = (0, 1/2, 1/2, 1/2, 1/2)′ and {Ũt } is a sequence of possibly dependent random vari-
ables defined below. This specification of conditional heteroskedasticity is also employed by
Andrews [4] and Andrews and Monahan [5] to demonstrate the superior performance of esti-
mators that incorporate the conditional heteroskedasticity over the more traditional parametric
covariance estimators.

The relative magnitude of conditional heteroskedasticity present in the model is controlled
through the degree of serial correlation in the regressors and error. To capture serial correlation,
the regressors and error are generated for each t = 1, . . . , n (and each k = 2, . . . , 5) as

Ũt = ρUŨt−1 + εt ,

Xkt = ρXXkt−1 + ηkt .

The underlying errors, εt and ηkt , are mutually independent N(0, 1) random variables.3 The serial
correlation parameters (ρU , ρX) take values in the set � = {0, 0.1, 0.3, 0.5, 0.7, 0.9}.4

Rothenberg derives the second-order asymptotic distribution of test statistics on coefficients
of a linear regression under the assumption of conditional homoskedasticity. He finds (p. 1011)
that as the correlation between the regressor under test and the scale parameter increases, the
inflation of the empirical size of the test statistics increases. Therefore, we employ a second
conditional heteroskedasticity specification in which the scale parameter depends on only one of
the varying regressors. To isolate the impact noted by Rothenberg, we consider two values for the
parameter ζ , specifically ζ = (0, 1, 0, 0, 0)′ and ζ = (0, 0, 1, 0, 0)′, while testing the hypothesis
that the first varying regressor is equal to zero. The first specification provides the highest level of
correlation between the regressor under test and the error scale, while in the second specification
the correlation between the regressor and scale is zero.5,6
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732 J. Erb and D.G. Steigerwald

We focus not only on hypothesis tests of a single coefficient, but also on tests of multiple
coefficients. Our hypothesis tests of multiple coefficients are designed to assess the effect of
including off-diagonal elements of the covariance matrix. To capture this effect, we consider
the single restriction imposed by the hypothesis H0 : β2 − β3 = 0. In the multiple coefficient
tests, we consider values of the heteroskedasticity parameter, ζ , equal to (0, 1/2, 1/2, 1/2, 1/2)′,
(0, 1, 0, 0, 0)′, and (0, 0, 0, 1, 0)′.

To construct test statistics for hypotheses concerning β, an estimator of the (conditional) vari-
ance of the ordinary least-squares (OLS) estimator, B, is needed. The variance of the (ordinary)
least-squares estimator, conditional on X = (X1, . . . , Xn)

′, is

Var(n1/2(B − β)|X)

= (n−1
n∑

t=1

XtX
′
t )

−1n−1
n∑

s=1

n∑
t=1

E(UsXsUtX
′
t

∣∣ X)(n−1
n∑

t=1

XtX
′
t )

−1.

The key component for estimation is J = n−1 ∑n
s=1

∑n
t=1 E(UsXsUtX

′
t |X).

We consider three estimators ofJ .7 The first is the heteroskedasticity–autocorrelation-consistent
estimator introduced by Newey and West

Ĵhac = 1

n − 5

⎡
⎣ n∑

t=1

Û 2
t XtX

′
t +

m∑
j=1

(
1 − j

m + 1

) n∑
t=j+1

Ût Ût−j (XtX
′
t−j + Xt−jX

′
t )

⎤
⎦ ,

where {Ût }nt=1 is the OLS residual vector.8 The value of m determines the maximum lag length
at which the conditional heteroskedasticity is estimated. As m controls the number of far lags
that enter the estimator, sample-based selection of m is very important in controlling the size of
test statistics. The value of the bandwidth is allowed to vary across simulations and is chosen
according to the automatic selection procedure developed by Andrews.

We also focus on a variant of the heteroskedasticity–autocorrelation-consistent estimator, dis-
cussed by Andrews and Monahan. To reduce the bias in Ĵhac, Andrews and Monahan advocate
separating the variance estimation into three steps. First, estimate the temporal correlation (at far
lags) by fitting a vector autoregression to {V̂t } (where V̂t = ÛtXt ), which yields the prewhitened
residuals {Ṽt }. (In our implementation, we fit a vector autoregression of order 1.) Second, construct
the variance estimator with the prewhitened residuals

J̃pw = 1

n − 5

⎡
⎣ n∑

t=1

Ṽt Ṽ
′
t +

m∑
j=1

(
1 − j

m + 1

) n∑
t=j+1

(Ṽt Ṽ
′
t−j + Ṽt−j Ṽ

′
t )

⎤
⎦ .

The last step is to recolour the estimator J̃pw to obtain the prewhitened variance estimator, Ĵpw,
according to

Ĵpw = ĈJ̃pwĈ ′, where Ĉ =
(

I −
p∑

s=1

Âs

)−1

.

Here, {Âs}ps=1 are the estimated coefficient matrices from a pth-order vector autoregression of
Vt .9

With the reduction in correlation brought about by the first-step prewhitening, there is less need
to select a large value of m.10 Although the variance of Ĵpw exceeds the variance of Ĵhac, Andrews
and Monahan find that use of the prewhitened residuals reduces the (downward) bias of Ĵhac. The
downward bias in the estimated standard errors is reduced to such an extent that, despite a loss of
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precision in estimating the standard errors, the coverage probabilities of confidence intervals are
increased.

Constructing accurately sized tests with each of the above estimators of J remains a problem.
However, the parametric prewhitening in Ĵpw does improve the size of test statistics relative to
Ĵhac. Therefore, it may be the case that increasing the richness of the first step, in which temporal
correlation is accounted for, lessens the importance of the second step, in which conditional
heteroskedasticity is accounted for. Rather than assume a low-dimension parametric model for
temporal correlation – such as a small-order, autoregressive model – one could assume that the
errors are generated by a conditionally homoskedastic (stationary stochastic) process with nothing
further known about the autocorrelation function. Under this assumption,

n−1
n∑

s=1

n∑
t=1

E(UsXsUtX
′
t |X) = n−1

n∑
s=1

n∑
t=1

δ|t−s|XsX
′
t ,

where δ|t−s| = E(UsUt |X) depends only on |t − s|. The third estimator of J , which is consistent
if the errors are conditionally homoskedastic, is

Ĵcho = 1

n − 5

n∑
s=1

n∑
t=1

δ̂|t−s|XsX
′
t ,

where (for t > s) δ̂|t−s| = 1
n

∑n
t=s+1 Ût Ût−s . (If s > t , simply switch the values of t and s in the

formula.)11

Under traditional asymptotics, all of the estimators of J lead to Gaussian limit distributions
in testing situations. However, extensions to the asymptotic theory are available for two of the
estimators. For Ĵhac, Kiefer and Vogelsang have developed an alternative limit theory based on
the assumption that the fraction of lags that appear in the estimator, m/n, is not asymptotically
negligible.12 The critical values that arise from the alternative limit theory can be considerably
larger than the standard Gaussian critical values. As these critical values depend on m, we report
simulation results for two sets of values of the bandwidth. The first uses the Andrews automatic
bandwidth procedure to compute the bandwidth and the second sets the bandwidth equal to the
sample size (m = n).13,14

For Ĵcho, Rothenberg provides critical values based on a higher-order asymptotic refinement
under strict exogeneity. If cv denotes the critical value from the first-order Gaussian approximation,
then Rothenberg’s second-order theory delivers the adjusted critical value

cvR = cv

(
1 + 1

n
f (X, Û)

)
.15

His asymptotic refinements indicate that the Gaussian critical values should generally be increased
(as f is generally greater than zero), although the precise form of his covariance estimator differs
slightly from Ĵcho.16 Because the adjusted critical value is a function of (X, Û), the adjusted
critical value is correlated with the estimated standard error. If this correlation is negative, then
the critical value adjusts to the magnitude of the standard error and lessens the length of estimated
confidence intervals. Such an adjustment feature can lead to a test statistic with large gains in size
at the cost of only small reductions in size-adjusted power.

3. Simulation results

For the simulations, we construct Yt according to Equation (1) with β = 0. Letting c be a 5 × 1
vector of constants that selects the parameters under test, we construct the test statistic for the
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734 J. Erb and D.G. Steigerwald

hypothesis H0 : c′β = 0 according to

t = [c′VBc]−1/2 · √
nc′B,

where B is the OLS estimate of β and VB is the 5 × 5 sample analogue of Var(n1/2(B − β)|X).
(VB is constructed for each of the variance estimators in Section 2.) The selected critical values
are for a two-sided test with 5% nominal size. The sample size is n = 50 in all models to allow
for direct comparison with the simulation results presented in recent papers, such as Kiefer and
Vogelsang [2] and Phillips et al. [14]. Each experiment consists of 50,000 replications. While
there are a variety of statistics that can be used to assess the finite-sample performance of the
variance estimators, we follow the convention of more recent authors and focus our attention on
the finite-sample size and size-adjusted power of test statistics.

It is well known that with any hypothesis test, there is a trade-off between size and power.
Because each test employs the OLS estimator as a point estimate, improvements in size will
generally be accompanied by a corresponding decrease in power. However, each test varies in
either the variance estimate, critical value, or both. Consequently, there is the possibility that a
particular estimator may display more accuracy in terms of both improved test size and higher
power against alternatives.

3.1. Single parameter tests

We first study H0 : c′β = 0, with c = (0, 1, 0, 0, 0)′, and so test whether the coefficient on the
first non-constant regressor is significantly different from zero. This choice of c leads to a standard
error estimate generated from only one of the diagonal elements of VB . In the tables that follow, the
test statistics are referenced by the covariance matrix estimator the test employs. Thus, hac denotes
the t-statistic when VB is constructed according to Ĵhac and evaluated with standard asymptotic
critical values. Critical values from the asymptotic refinements are indicated by superscripts, so
choR is the t-statistic constructed with Ĵcho and evaluated with Rothenberg’s second-order critical
values. In a similar fashion, hacKV indicates the use of Ĵhac with the Kiefer–Vogelsang asymp-
totic approximation to generate test critical values and a bandwidth determined by the Andrews
automatic selection procedure. As the Kiefer-Vogelsang approximation allows the bandwidth to
equal the sample size, we denote this statistic as hacKVn.

Table 1 reports the finite-sample empirical size of each test statistic when the AR(1) errors are
overlaid with multiplicative heteroskedasticity entering from all four non-constant regressors, i.e.
ζ = (0, 1/2, 1/2, 1/2, 1/2)′. The nominal size for each test is 0.05. As with previous authors,
we find that the traditional hac test performs quite poorly in terms of test size, especially when
the dependence in the data is strong. Indeed, when ρX = ρU = 0.9, the hac test rejects the null
hypothesis 38% of the time. This is quite unsettling considering that the applied researcher will
be making inference based on a nominal size of 5%.

As the test statistics all employ the same point estimate in the numerator, improvements in
test size will be achieved by either increasing the standard error in the denominator or widening
the test critical values. In column 2, we see that prewhitening residuals reduces test size by
inflating the estimated standard errors, although over-rejection of the null remains a problem. In
the ρX = ρU = 0.9 case, the empirical size drops to 0.32, a 16% size gain. However, attempting
to remove correlation at far lags by prewhitening when serial correlation in the data is weak can
inflate test size even more than using the HAC estimator, which can be seen by comparing columns
1 and 2 when either ρX or ρU is less than 0.3.

Column 3 shows that use of the Kiefer–Vogelsang asymptotic refinements reduces size inflation
by widening the test critical values. The new limit theory leads to critical values that typically
take on (absolute) values in the range of 2.0–4.81, depending on the chosen bandwidth for the
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Table 1. Empirical size: heteroskedastic AR(1) errors, ζ = (0, 1/2, 1/2, 1/2, 1/2).

ρX ρU (1), hac (2), pw (3), hacKV (4), hacKVn (5), cho (6), choR

0.9 0.9 0.3808 0.3235 0.3171 0.2332 0.3192 0.2367
0.7 0.2834 0.2351 0.2327 0.1686 0.2371 0.1641
0.5 0.2126 0.1803 0.1766 0.1322 0.1941 0.1306
0.3 0.1655 0.1501 0.1391 0.1102 0.1668 0.1076
0.1 0.1310 0.1308 0.1088 0.0934 0.1479 0.0906
0.0 0.1213 0.1254 0.0987 0.0892 0.1403 0.0809

0.7 0.9 0.2859 0.2460 0.2393 0.1680 0.2481 0.1854
0.7 0.2352 0.2025 0.1970 0.1414 0.2087 0.1508
0.5 0.1933 0.1726 0.1645 0.1217 0.1844 0.1326
0.3 0.1554 0.1469 0.1324 0.1034 0.1591 0.1136
0.1 0.1327 0.1332 0.1108 0.0903 0.1440 0.1018
0.0 0.1209 0.1260 0.1007 0.0886 0.1345 0.0929

0.5 0.9 0.2108 0.1880 0.1745 0.1208 0.1948 0.1493
0.7 0.1836 0.1669 0.1557 0.1080 0.1711 0.1295
0.5 0.1621 0.1519 0.1385 0.1019 0.1569 0.1204
0.3 0.1407 0.1382 0.1214 0.0927 0.1434 0.1077
0.1 0.1226 0.1275 0.1054 0.0831 0.1342 0.1008
0.0 0.1159 0.1244 0.0994 0.0819 0.1285 0.0963

0.3 0.9 0.1592 0.1492 0.1355 0.0949 0.1579 0.1273
0.7 0.1473 0.1419 0.1261 0.0924 0.1471 0.1153
0.5 0.1367 0.1353 0.1194 0.0871 0.1409 0.1100
0.3 0.1239 0.1277 0.1080 0.0819 0.1281 0.0994
0.1 0.1167 0.1232 0.1024 0.0793 0.1282 0.0996
0.0 0.1142 0.1240 0.0996 0.0783 0.1237 0.0967

0.1 0.9 0.1215 0.1244 0.1046 0.0749 0.1295 0.1073
0.7 0.1187 0.1236 0.1024 0.0777 0.1285 0.1036
0.5 0.1199 0.1277 0.1047 0.0796 0.1289 0.1031
0.3 0.1138 0.1227 0.0995 0.0758 0.1239 0.0997
0.1 0.1091 0.1180 0.0957 0.0745 0.1189 0.0937
0.0 0.1094 0.1186 0.0954 0.0736 0.1195 0.0945

0.0 0.9 0.1105 0.1190 0.0948 0.0719 0.1225 0.1011
0.7 0.1087 0.1181 0.0941 0.0728 0.1225 0.0995
0.5 0.1089 0.1191 0.0949 0.0745 0.1203 0.0958
0.3 0.1069 0.1178 0.0945 0.0747 0.1181 0.0949
0.1 0.1078 0.1196 0.0947 0.0759 0.1200 0.0947
0.0 0.1059 0.1172 0.0925 0.0729 0.1190 0.0939

HAC estimator. When the bandwidth is chosen according to the Andrews procedure, the size
gains offered by the Kiefer–Vogelsang asymptotics are slightly larger than those achieved by
prewhitening, but are typically comparable when the serial correlation is strong.

Similar to prewhitening, we find that Ĵcho delivers larger standard errors that improve the finite-
sample size of the resulting test statistics, and similar to the Kiefer–Vogelsang asymptotics, we
find that the second-order critical value refinement of Rothenberg further improves the test size
by increasing the critical values. Columns 5 and 6 of Table 1 present the empirical size of test
statistics when Ĵcho is used in conjunction with either the standard normal critical values or the
second-order critical values of Rothenberg, respectively. Even under misspecification, the choR

test delivers more substantial size reductions than both the pw and hacKV tests. For ρX = ρU = 0.9,
the empirical size of the choR test is 0.24. Although the actual size remains significantly larger
than the 5% nominal level, the choR test reduces size inflation by more than one-third of the level
of the hac test. Moreover, the improved accuracy of the choR test over the more conventional HAC
tests continues to hold for very low levels of serial correlation. For ρX = ρU = 0.1, the second-
order adjusted, homoskedastic estimator improves test size accuracy relative to the Newey–West
estimator by about 14% or a drop in raw size from 0.1091 to 0.0937.17
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736 J. Erb and D.G. Steigerwald

Recall that for a fixed value of ρX, the heteroskedastic component of the error becomes more
pronounced as ρU decreases. That the conditionally homoskedastic estimator retains an advantage
in test size in this case is quite remarkable. The favourable performance of choR is primarily due
to the adaptability of the critical value to the data-generating process. The second-order theory
for Ĵcho delivers critical values that, while typically larger than their Gaussian counterparts, adjust
with the regressors and residuals in such a way that the critical value increases when the estimated
standard error is small and decreases when the estimated standard error is large. This negative
correlation between the standard error and critical value serves as a hedge in cases where over-
rejections of the null are most likely to occur. As can be seen from column 5 of Table 1, Ĵcho

is indeed influenced by the heteroskedasticity as the cho test performs more poorly than the hac
test when ρU drops below 0.3. However, when the Ĵcho estimator is used in conjunction with the
second-order critical values, the choR test retains a size advantage over the hac and pw tests for all
values of ρX and ρU , and a size advantage over hacKV for all but the smallest values of ρX and ρU .18

Table 2 reports the mean and variance of Rothenberg’s second-order critical value, as well as its
correlation with the estimated standard error, when ρX is fixed at 0.9. While the mean of the critical
value remains relatively constant as ρU decreases, the variation increases and the negative correla-
tion with the estimated standard error becomes more pronounced. The adaptability of the critical
value allows the conditionally homoskedastic estimator to maintain size improvements over the
hac, hacKV, and pw tests, even as the heteroskedasticity in the process becomes more pronounced.

It is important to note that the asymptotic theory put forth by Kiefer and Vogelsang does not
restrict the bandwidth to be small relative to the sample size in order for the testing procedure
to be valid. When the bandwidth is set equal to the sample size, the considerable downward bias
of the Newey–West estimator is offset by an adjusted critical value of 4.81, which is almost two
and a half times the critical value of the standard normal distribution. In comparison, the average
critical value for the hacKV test (as selected by the Andrews method) ranges from 2.04 when the
temporal dependence is low to 2.26 when the dependence is high, and the average critical value
for the choR test ranges from 2.11 when the dependence is low to 2.37 when the dependence is
high. Column 4 in Table 1 shows that for more moderate levels of dependence, further reductions
in test size are achieved with the Kiefer–Vogelsang critical values if the bandwidth is fixed and
equal to the sample size, though the improvements are small. However, such drastic inflation of
the critical value is sure to decrease the probability of rejecting the hypothesis for all values of
β, and the slight size improvements of the hacKVn test over the choR test prove to be extremely
costly in terms of test power.

In order to ascertain the power of the various testing procedures, we again simulate (1) and
compute the size-adjusted power against alternative values of β. It is important to first note that
size adjustment is not possible in practice as the underlying data-generating process is typically not
known to the researcher. However, the technique may be useful in developing methods as it is useful
in comparing the power of tests that do not have the same finite-sample size. In our simulations,
the stochastic process is known, and a size-adjusted critical value for each specification can be
calculated via simulation.

Table 2. Performance of Rothenberg’s second-order-adjusted critical value under
heteroskedasticity.

ρX ρU (1), Mean (2), Variance (3), Corr. with
√

c′VBc

0.9 0.9 2.37 0.04 −0.15
0.7 2.34 0.04 −0.22
0.5 2.32 0.05 −0.27
0.3 2.32 0.05 −0.32
0.1 2.33 0.08 −0.34
0.0 2.34 0.08 −0.37
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Figure 1 plots the upper half of the size-adjusted power functions for the test statistics under the
AR(1) specification presented in Table 1 when ρX = ρU . We compute size-adjusted power as the
fraction of test rejections that arise when the true value of β2 is different from the hypothesized
null value of zero. Specifically, we set β = ψ × (0, 1, 0, 0, 0)′ where ψ is chosen as a set of 11,
equally spaced points from zero to some upper bound for which the estimated power for all tests
is roughly one.19 We simulate the power of test statistics using 10,000 replications for each value
of ψ . The size-adjusted critical values are also computed via simulation methods using 50,000
replications. As each estimator gives rise to only one finite-sample distribution, the size-adjusted
critical values and size-adjusted power curves for the hac and hacKV tests are equivalent (as are
those for the cho and choR tests).

Returning to our discussion of the hacKVn test, the most striking feature of Figure 1 is the extent
to which the power of the hacKVn test lags the power of the other tests. As an example, consider
the case where β2 = 2.4 and the serial correlation parameters are equal to 0.9. The size-adjusted
power of the hac test is 0.72, while the power of the choR test is 0.70. Recall the empirical sizes of
the two tests were 0.38 and 0.24, respectively, indicating a 37% reduction in test size is achieved
with approximately a 3% decrease in test power. As noted above, the empirical size is further
improved to 0.23 when using the hacKVn test. However, the power of the test falls to 0.59, and
we see that the slight additional improvement in the size of the hacKVn test comes at the cost of
reducing the power by 16%. Last, the figure shows that the choR test provides size-adjusted power
that is quite similar to both the hac and pw tests (with minimal crossing).

In general, the power functions for other values of ρX and ρU are similar in shape and rel-
ative performance to those presented in Figure 1.20 The HAC, prewhitened, and conditionally
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Figure 1. Size-adjusted power: ζ = (0, 1/2, 1/2, 1/2, 1/2)′ (H0 : β2 = 0).
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738 J. Erb and D.G. Steigerwald

homoskedastic estimators give rise to tests with very similar power, while the hacKVn test exhibits
power that is substantially lower across the range of alternatives.

An unfortunate feature of the hac and pw tests is that rejection depends heavily upon user-choice
parameters (including bandwidth, weighting kernel, and prewhitening model). For this reason,
Andrews and others have developed data-driven, ‘optimal’ bandwidth selection procedures in an
attempt to make the estimation process more automatic.21 The Kiefer–Vogelsang asymptotics
eliminate the need of choosing an ‘optimal’ bandwidth by allowing the critical values to adjust
with the chosen bandwidth. In this way, the choice of bandwidth is incorporated directly into the
testing problem. In practice, however, the researcher must still chose a bandwidth, and different
choices may give rise to very different inferences on the parameter under test.22

To illustrate the problem that bandwidth selection could cause, Table 3 shows the probability
that the hacKV test rejects the null hypothesis for at least one bandwidth in a given replication. That
is, for any given replication, we constructed a test statistic and critical value pair for each value
of the bandwidth between m = 5 and m = n = 50.23 If the null hypothesis was rejected for one
or more of the test statistic/critical value pairs, the entire trial was considered as if it rejected the
null hypothesis. We then repeated the process 50,000 times and found the fraction of replications
which produced at least one rejection. The probability of finding at least one bandwidth value
that produces a test rejection in the hacKV test (Table 3) is much larger than the empirical size
of the hacKV tests in column 3 of Table 1. In fact, the probabilities are often larger in magnitude
than the sizes of the traditional hac test in column 1 of Table 1. Clearly, the failure to properly
account for the pre-test estimation of the bandwidth results in further size inflation and negates
the advantages of the hacKV test over the more traditional tests.

The problem of nuisance parameters in the testing process highlights an important advantage of
Ĵcho over other estimators. First, Ĵcho estimates the correlation at all lags, eliminating the necessity
of choosing a particular bandwidth. Second, there is no weighting kernel or prewhitening filter
involved in the estimation. And third, the second-order critical value adjustment is ‘automatic’ in
the sense that it is data dependent and can be implemented without any choices by the user.

While the choR test performs favourably under the specification in Table 1 when compared
with more traditional tests commonly used in the literature, it is also important to evaluate the test
under varying degrees of serial correlation and heteroskedasticity.24 One way to alter the degree
of heteroskedasticity in the data is to adjust the impact of individual regressors on the error scale.
Recall that the error term is generated according to

Ut = |X′
t ζ | × Ũt .

Rather than set ζ = (0, 1/2, 1/2, 1/2, 1/2)′, as in the previous specifications, we now set ζ =
(0, 1, 0, 0, 0)′ and allow the heteroskedasticity to arise from scaling the homoskedastic error

Table 3. Probability the hacKV test rejects the null hypothesis for at least one value of
the bandwidth.

AR(1) regressors and errors – ζ = (0, 1/2, 1/2, 1/2, 1/2)

ρX

ρU 0.9 0.7 0.5 0.3 0.1 0.0

0.9 0.3662 0.2788 0.2164 0.1724 0.1442 0.1336
0.7 0.2776 0.2310 0.2020 0.1654 0.1418 0.1300
0.5 0.2258 0.2030 0.1756 0.1482 0.1454 0.1256
0.3 0.1916 0.1752 0.1620 0.1448 0.1342 0.1174
0.1 0.1766 0.1542 0.1478 0.1344 0.1380 0.1284
0.0 0.1468 0.1458 0.1362 0.1250 0.1328 0.1412
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term, Ũt , by the absolute value of the first non-constant regressor. As we are testing the hypothesis
H0 : β2 = 0, it may matter whether the heteroskedasticity is brought about by the first non-
constant regressor or some other regressor in the model. For this reason, we also report the
empirical size when the error is scaled by the absolute value of the second non-constant regressor,
ζ = (0, 0, 1, 0, 0)′.

The upper half of Table 4 shows the empirical size of tests when the heterogeneity arises from
the first non-constant regressor where, for brevity, we report only the case where ρU = ρX. While
the choR test performs comparably to other robust tests when the amount of serial correlation
is high, it no longer exhibits a size advantage, and it becomes progressively disadvantaged as
the values of ρU and ρX fall towards zero. However, when testing the coefficient on the second
non-constant regressor, the results change dramatically. The lower half reports the empirical size
of the t-tests when ζ = (0, 0, 1, 0, 0)′ and the heteroskedasticity arises from a regressor other
than the regressor under test. In this case, the choR test offers a considerable size advantage over
all the other tests, even as the values of ρX and ρU approach zero. In fact, as the serial correlation
parameters fall to zero, the size of the choR test falls below the 5% nominal level.

This table would appear to confirm the observation in Rothenberg that the degree of correlation
between the regressor under test and the error variance has a substantial impact on inflating the
empirical size of test statistics. While this is true for all tests under examination, the size distortion
is especially pronounced for choR. In practice, the form in which the heteroskedasticity enters the
model appears to be of considerable importance when performing tests of hypotheses.

Figures 2 and 3 plot the corresponding size-adjusted power curves for the AR(1) process with
ρX = ρU when ζ = (0, 1, 0, 0, 0)′ and ζ = (0, 0, 1, 0, 0)′, respectively. Once again, we see choR

performs comparably to hac and hacKV in terms of size-adjusted power, and all three outperform
hacKVn by a considerable margin.

3.2. Multiple parameter tests

We now briefly turn our attention to testing hypotheses that involve multiple parameters. These
multi-parameter tests incorporate at least one off-diagonal element ofVB in computing the standard
error. Specifically, we examine the performance of tests under the null hypothesis H0 : β2 − β3 =
0 (or H0 : c′β = 0 for c = (0, 1, −1, 0, 0)′) for each of the heteroskedastic specifications listed
above. The results are found in Table 5, where once again we report only the results from setting
ρU = ρX.

Table 4. Empirical size – heteroskedastic AR(1) errors.

ρX = ρU (1), hac (2), pw (3), hacKV (4), hacKVn (5), cho (6), choR

ζ = (0, 1, 0, 0, 0)′
0.9 0.4452 0.3959 0.3820 0.2781 0.4851 0.4023
0.7 0.2672 0.2313 0.2287 0.1625 0.3748 0.3090
0.5 0.1834 0.1708 0.1609 0.1142 0.3169 0.2674
0.3 0.1417 0.1440 0.1253 0.0935 0.2791 0.2399
0.1 0.1271 0.1369 0.1123 0.0839 0.2697 0.2321
0.0 0.1244 0.1335 0.1108 0.0829 0.2945 0.2312

ζ = (0, 0, 1, 0, 0)′
0.9 0.3191 0.2561 0.2566 0.1883 0.2136 0.1402
0.7 0.1925 0.1632 0.1580 0.1120 0.1168 0.0756
0.5 0.1319 0.1234 0.1104 0.0822 0.0824 0.0559
0.3 0.0994 0.1049 0.0844 0.0672 0.0670 0.0473
0.1 0.0886 0.0988 0.0761 0.0610 0.0606 0.0439
0.0 0.0866 0.0978 0.0748 0.0624 0.0607 0.0439
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Figure 2. Size-adjusted power: ζ = (0, 1, 0, 0, 0)′ (H0 : β2 = 0).

In testing the hypothesis β2 − β3 = 0, the choR test provides the best empirical size under all
heteroskedasticity specifications and under all degrees of dependence, excepting the case where
ζ = (0, 1, 0, 0, 0)′. The size advantage of the choR tests in the first and third heteroskedasticity
specifications is quite large. The empirical size of the choR test is cut by more than half the level
of the traditional estimators, and it even exhibits better size than the hacKVn test. In both cases,
the empirical size approaches the nominal size rather quickly as the serial correlation decreases.
When the heteroskedasticity enters solely from the regressors under test, the choR test is not as
disadvantaged as in previous specifications, but still cannot be given a strong recommendation.

Last, note that in the model under study, the testing problem is made easier by the introduction
of the second parameter to the hypothesis. Comparing the relevant rows of Table 5 with the
corresponding rows in previous tables where ρU = ρX, we see that the empirical sizes of these
tests are lower than the sizes of the single parameter tests across the full range of estimators.
The same is also true for values of ρU �= ρX (though the results are not reported here). The size-
adjusted power functions for these multi-parameter tests follow the same patterns as the power
functions of previous tests and can be found in Erb and Steigerwald [13].

4. Empirical application

To understand the impact of our proposed standard error estimator on applied research, we revisit
Lustig and Verdelhan [17] who use the Newey–West standard error estimator in their study of
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Figure 3. Size-adjusted power: ζ = (0, 0, 1, 0, 0)′ (H0 : β2 = 0).

Table 5. Empirical size of multi-parameter tests – het. AR(1) errors

H0 : β2 − β3 = 0

ρX = ρU (1), hac (2), pw (3), hacKV (4), hacKVn (5), cho (6), choR

ζ = (0, 1/2, 1/2, 1/2, 1/2)′
0.9 0.3220 0.2589 0.2560 0.1858 0.2118 0.1389
0.7 0.1930 0.1628 0.1561 0.1111 0.1157 0.0723
0.5 0.1324 0.1252 0.1109 0.0837 0.0835 0.0576
0.3 0.1016 0.1066 0.0859 0.0675 0.0668 0.0474
0.1 0.0902 0.0993 0.0771 0.0632 0.0621 0.0461
0.0 0.0840 0.0950 0.0712 0.0583 0.0593 0.0425

ζ = (0, 1, 0, 0, 0)′
0.9 0.4185 0.3653 0.3544 0.2600 0.3951 0.3091
0.7 0.2513 0.2184 0.2142 0.1514 0.2768 0.2142
0.5 0.1723 0.1620 0.1505 0.1073 0.2185 0.1739
0.3 0.1346 0.1372 0.1168 0.0882 0.1899 0.1549
0.1 0.1213 0.1307 0.1064 0.0803 0.1752 0.1465
0.0 0.1181 0.1293 0.1043 0.0793 0.1772 0.1458

ζ = (0, 0, 0, 1, 0)′
0.9 0.3209 0.2545 0.2540 0.1862 0.2133 0.1388
0.7 0.1883 0.1589 0.1519 0.1098 0.1163 0.0753
0.5 0.1356 0.1258 0.1134 0.0812 0.0837 0.0572
0.3 0.1026 0.1073 0.0883 0.0721 0.0678 0.0482
0.1 0.0885 0.0976 0.0751 0.0643 0.0624 0.0446
0.0 0.0887 0.0986 0.0765 0.0636 0.0635 0.0463
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foreign currency risk premia. Lustig and Verdelhan propose that the excess returns of foreign
currency markets can be partially explained as a premium on aggregate consumption growth risk
in US markets. The premium arises because returns from high-interest-rate countries tend to be
low when (US aggregate) consumption growth is low. Conversely, the assets of the low-interest-
rate countries negatively covary with consumption growth and so can serve as a hedge against US
aggregate consumption growth risk.

To verify their proposition, Lustig and Verdelhan study a panel of countries from which they
first assign each country to one of eight currency portfolios. The portfolios, which are formed
by sorting on the short-term risk-free interest rate of the country, are rebalanced every period so
that the countries with the lowest interest rates are in the first portfolio and countries with the
highest interest rates are in the eighth portfolio. With annual data from 1953–2002, they estimate
the covariances, which underpin their analysis, between excess currency returns and the growth
rate of consumption. For each of the portfolios, estimates are obtained from regressions of the
form

Rt+1 = α + βft + Ut,

where Rt+1 is the annual excess return on the portfolio and ft the growth of consumption in the
previous year. Separate regressions are run for durable and non-durable consumption.

The first row of Table 6 replicates a subset of the results found in Table 6 of Lustig andVerdelhan,
which are obtained from a regression of excess returns on durable consumption growth for the
32-year period after the demise of Brenton-Woods in 1971. As can be seen, the consumption risk
is generally increasing in the interest rate, with a difference in consumption betas of the first and
seventh portfolios of about 160 basis points. The remaining rows in Table 6 report the estimated
standard errors and critical values for the six different tests of the regression coefficients. Numbers
in brackets are estimated standard errors. Numbers in italics represent alternative critical values
which can be used in the hypothesis tests. Significance at the 5% level is denoted by an asterisk.

When the Newey–West estimator is used to estimate the standard errors, only three portfolios
exhibit risk parameters that are significantly different from zero. However, hypothesis rejection
varies depending on which standard error estimator is employed. For example, the hac, hacKV,
and hacKVn tests all reject the hypothesis that β is equal to zero for the third portfolio. The hacKV

and hacKVn tests reject the hypothesis even though the test critical values have increased from
1.96 to 2.0794 and 4.813, respectively. However, the pw, cho, and choR tests fail to reject the
hypothesis as the estimated standard errors are significantly larger than the Newey–West standard
errors.

For portfolios 4 and 7, the hac and hacKV tests continue to reject the null, but the other tests
show some switching in test rejection across portfolios. Moving to portfolio 4, the hacKVn tests
no longer rejects the null hypothesis, but the pw and cho tests now do. Last, in the seventh
portfolio, every testing procedure, excepting the choR test, rejects the null hypothesis at the 5%
level. Interestingly, the choR test fails to reject the null hypothesis for any of the eight portfolios.

Although it is impossible to know exactly what causes the test rejections to vary across portfolios
– or for that matter whether the tests are properly or improperly rejecting the null – the simulation
results in the previous section suggest that heteroskedasticity may play a role. To further examine
the effect of heteroskedasticity, we test the null hypothesis of homoskedasticity in portfolios
3, 4, and 7 using the White heteroskedasticity test. Specifically, we regress the squared OLS
residuals from each model on a constant, the consumption factor, ft , and the consumption factor
squared, then test the hypothesis that the coefficients on the factors are jointly equal to zero.25

For portfolio 3, the χ2-test statistic with two degrees of freedom is 1.613 with a p-value of 0.446.
For portfolios 4 and 7, the tests statistics are 3.242 and 8.310 and the p-values are 0.198 and
0.016, respectively. There appears to be little evidence of heteroskedasticity for portfolio 3, slight
evidence of heteroskedasticity in portfolio 4, and substantial evidence of heteroskedasticity in
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Table 6. Estimation of factor betas for eight portfolios sorted on interest rates (1971–2002).

Portfolio

Coef. estimate 1 2 3 4 5 6 7 8

β 0.5367 0.7857 1.2881 2.0321 1.2249 1.3590 2.1827 0.8447

[Standard error estimate]
Test critical value

hac
[0.7177]

1.96
[0.5437]

1.96
[0.5503]*

1.96
[0.7371]*

1.96
[0.7453]

1.96
[0.9185]

1.96
[0.7997]*

1.96
[0.8608]

1.96

hacKV [0.7177]
2.1471

[0.5437]
2.1471

[0.5503]*
2.1471

[0.7371]*
2.0532

[0.7453]
2.1471

[0.9185]
2.0532

[0.7997]*
2.0532

[0.8608]
2.2416

pw
[0.8108]

1.96
[0.5796]

1.96
[0.6712]

1.96
[0.7762]*

1.96
[0.8125]

1.96
[0.9431]

1.96
[0.7532]*

1.96
[0.8516]

1.96

hacKV n [0.5759]
4.813

[0.4333]
4.813

[0.2016]*
4.813

[0.4434]
4.813

[0.4511]
4.813

[0.4013]
4.813

[0.3185]*
4.813

[0.4286]
4.813

cho
[0.8597]

1.96
[0.7086]

1.96
[0.8178]

1.96
[0.9615]*

1.96
[0.8409]

1.96
[0.9694]

1.96
[1.0425]*

1.96
[1.5109]

1.96

choR [0.8597]
2.2717

[0.7086]
2.2636

[0.8178]
2.2417

[0.9615]
2.2678

[0.8409]
2.3921

[0.9694]
2.2654

[1.0425]
2.2422

[1.5109]
2.2476

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
C
a
l
i
f
o
r
n
i
a
,
 
S
a
n
t
a
 
B
a
r
b
a
r
a
]
 
A
t
:
 
1
8
:
1
0
 
1
0
 
M
a
y
 
2
0
1
1



744 J. Erb and D.G. Steigerwald

portfolio 7. The results in the previous section suggest that the cho and choR tests are likely most
accurate in portfolio 3, indicating the hac, hacKV, and hacKVn tests may falsely reject the null.
On the other hand, the cho and choR tests are most likely to overreject the null hypothesis in
portfolio 7, when heteroskedasticity is strongest. Indeed, the cho test rejects the null hypothesis
in portfolio 7. However, when the conditionally homoskedastic estimator is used in conjunction
with the Rothenberg critical value, the test fails to reject the hypothesis that β is equal to zero.

5. Conclusion

The simulation results of this paper suggest that when sample sizes are small, modelling the
heterogeneity of a process is secondary to accounting for dependence. We find that a conditionally
homoskedastic covariance matrix estimator (when used in conjunction with Rothenberg’s second-
order critical value adjustment) improves test size with only a minimal loss in test power, even
when the data manifest significant amounts of heteroskedasticity. In some specifications, the size
inflation was cut by nearly 40% over the traditional HAC test. Much of this size gain can be
attributed to the manner in which the second-order theory adjusts the critical value according to
the degree of correlation found in the data. Strong dependence usually leads to estimated standard
errors that are too small, resulting in tests that reject the null hypothesis too often. Rothenberg’s
second-order critical value refinements serve to dampen this effect by producing larger critical
values when standard errors are small, and more moderate critical values when standard errors
are large.

In addition to improved small-sample test size, the conditionally homoskedastic estimator offers
improvements over traditional HAC estimators in both computational ease and testing continuity.
While the second-order critical value calculation is slightly complicated, the process is completely
data dependent and requires no user choices in implementation. Conversely, traditional HAC
estimators require the user to specify a weighting kernel, prewhitening filter, and a bandwidth
selection procedure, which previous authors have shown can have a significant impact on the
performance of the estimator.

To be sure, the conditionally homoskedastic covariance estimator does not perform the best
under all heteroskedastic conditions. As noted by Rothenberg, statistical inference is especially
problematic when the error variance is highly correlated with the regressor of interest. Care must
be taken when heteroskedasticity is caused primarily by the regressor whose coefficient is under
test. However, the adjusted critical values and estimator that we propose deliver a testing procedure
with substantial gains in controlling size, at little cost in power.
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Notes

1. Other variance estimators have also been proposed such as the vector autoregression heteroskedasticity and autocor-
relation consistent (VARHAC) estimator [6] or the bootstrap estimator [7–10]. The simulation results of Den Haan
and Levin [6,11] show that the VARHAC estimator performs comparably to the Andrews and Monahan prewhitened
estimator, and Kiefer and Vogelsang [2] show that the block bootstrap performs comparably to tests employing the
fixed-bandwidth asymptotic critical values.

2. Rothenberg assumes that the regressors are strictly exogenous, while Newey–West, Andrews–Monahan and Kiefer–
Vogelsang assume that the regressors are only weakly exogenous. The simulations in Erb and Steigerwald [13] study
the relative performance of the Rothenberg correction under both strict and weak exogeneity.
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3. We set ε0 and ηk0 equal to zero in the simulations and discard the first 50 observations to remove any influence
from initial values.

4. Data were also simulated according to a moving-average specification, under which the serial correlation is of
limited duration and conditional heteroskedasticity plays a correspondingly larger role. The results were similar to
those found in the autoregressive specifications and can be found in Erb and Steigerwald [13].

5. The values of ζ have been chosen to ensure that the unconditional variance of Ut is the same in all specifications.
Andrews and Monahan also study this specification, albeit without reference to the findings in Rothenberg.

6. To see that this model brings conditional heteroskedasticity, consider the case in which ζ = (0, 1, 0, 0, 0)′. Then

E(UtUt−1 | X) = E(|X2t |Ũt · |X2t−1|Ũt−1 | X),

and the covariance conditional on X is ρu/(1 − ρ2
u)|X2t ||X2t−1|.

7. Not considered here are the classic OLS variance estimator under the assumption of i.i.d. errors and the parametric,
AR(1) variance estimator. Simulation results for these estimators can be found in Erb and Steigerwald [13].

8. We use n − 5, rather than n, as the divisor because the degrees-of-freedom calculation is likely to be used when the
sample size is small, as is the case in our simulations where n = 50.

9. To ensure the matrix I − ∑
s As is not too close to singularity, we restrict the eigenvalues of

∑
s Âs to be no larger

than 0.97 in absolute value. See Andrews and Monahan [5, p. 957] for the details.
10. This estimator, which includes prewhitening, retains many of the asymptotic properties of Ĵhac including the rate

of convergence.
11. Our finite-sample results are designed to guide researchers with moderate sample sizes, in which size inflation is

known to be a problem. Although Ĵcho is not a consistent estimator of J under conditional heteroskedasticity, a
consistent estimator is easily obtained by switching from Ĵcho to Ĵhac for large sample sizes (say n > 1000).

12. A similar limit theory is developed by Phillips et al. [14].
13. Our goal is to evaluate the accuracy of the Kiefer–Vogelsang limit theory under both ‘large’and ‘small’specifications

of the bandwidth parameter, and we use the Andrews method to select the ‘small’ bandwidth. Technically, the limit
theory will not hold if the Andrews method is employed, as the Andrews procedure gives a bandwidth value
that is o(n) and Kiefer and Vogelsang assume that the bandwidth parameter is O(n). However, we find in our
simulations that the Kiefer–Vogelsang testing procedure performs substantially better (in terms of test size) when
the Andrews procedure is implemented for each replication, as opposed to using some fixed value for the bandwidth,
say m/n = 0.2, for all replications. For this reason, we report the simulation results using the Andrews method.

14. Unfortunately, it is not clear whether the asymptotic theory of Kiefer and Vogelsang extends to tests employing the
prewhitened HAC estimator. The Kiefer–Vogelsang critical values depend on the ratio of the bandwidth to the sample
size (m/n) in the HAC estimator.Although the prewhitened variance estimator also requires a specified bandwidth in
the second stage, it is typically much smaller than the bandwidth without the first-stage prewhitening (as much of the
dependence has already been removed).Although the empirical size may be improved in some cases by prewhitening,
the limit theory may not hold in all cases. For example, Vogelsang and Franses [15] employ prewhitening with the
alternative critical values and find (at least in one simulation specification) that, ‘over-rejections can be a problem
with moderately persistent data and prewhitening may not improve matters’ (p. 15).

15. The precise form of f is detailed in the appendix.
16. Rothenberg considers covariance estimators of the form 1/(n − j)

∑
Ût Ût−j , where j corrects for the number of

observations lost due to the lag length. To ensure a positive semi-definite estimator, we replace the factor 1/(n − j)

with 1/(n − 5) [16].
17. As the table makes clear, the conditionally homoskedastic variance estimator can only be recommended in con-

junction with Rothenberg’s second-order critical value adjustment when the data are heteroskedastic. Although the
cho test has better size than the hac test if the serial correlation is high, it rarely exhibits smaller size than the pw
or hacKV tests.

18. Intuition would suggest that for a fixed value of ρU the performance of the cho and choR tests should deteriorate
as ρX increases. However, ρX also adds to the overall pattern of serial correlation in the regressors as well as the
errors. For this reason, the cho and choR tests show size gains over other HAC tests when ρU is large, even when
ρX is large.

19. For example, if the upper bound is set at 6, then the distance between each element of ψ is 6/10, and ψ =
{0, 0.6, 1.2, 1.8, . . . , 6}.

20. Note that the range of values along the β2-axis differs for alternative values of the serial correlation parameters. All
tests are showing substantial increases in power as the correlation in the data falls.

21. Researchers often prefer ‘automatic’ bandwidth procedures as they simplify the estimation process and provide a
level of uniformity across different projects. However, researchers must still make decisions regarding the spec-
ifications which underpin all mechanical bandwidth methods, such as objective functions and data dependence.
For example, the Andrews bandwidth procedure is a function of J , and therefore, a preliminary estimate of J is
necessary to compute the bandwidth to be used in the estimation of Ĵhac. Typically, the AR(1) model is used as a
preliminary estimate of J , but alternative models will lead to alternative bandwidths.

22. There is no data-dependent method of choosing an ‘optimal’ bandwidth for the hacKV test. Phillips, Sun, and Jin
propose a data dependent rule for their test that minimizes a weighted sum of type I and type II errors, for which
Kiefer and Vogelsang conjecture can be extended to their test. However, in place of selecting the bandwidth, the
researcher is now left to choose the proper weights for the type I and type II errors.
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23. To ensure the estimator accurately accounts for the serial correlation, we impose a minimum bandwidth of 5.
Allowing for bandwidths less than 5 further inflates the rejection probabilities.

24. Not surprisingly, when the errors truly are homoskedastic, the choR test outperforms all other robust tests in terms
of finite-sample empirical size, as it exploits the homogeneity in the data. These results can be found in Erb and
Steigerwald [13].

25. A heteroskedasticity pretest would undoubtedly alter the test size and we do not recommend choosing among the
testing procedures in this manner.

Appendix. Calculation of second-order critical values

We are interested in testing the single restriction hypothesis H0 : c′β = c′β0. Under the assumption of conditional
homoskedasticity, we form the test statistic

tcho = c′√n(B − β0)

[c′(n−1X′X)−1Ĵcho(n−1X′X)−1c]1/2
.

Using Edgeworth expansions, Rothenberg shows that the second-order-adjusted critical value of this test statistic, defined
as Pr(tcho > cvR

α ) = α, can be expressed as

cvR
α = Zα

(
1 + 1/4(1 + Z2

α)V̂W − â(Z2
α − 1) − b̂

2n

)

where Zα is the corresponding α critical value from the standard normal distribution. The formula for V̂W comes from
rewriting the test statistic tcho as

tcho = Tcho

(1 + W/
√

n)1/2
.

Here, Tcho is the test statistic formed using the true value of Jcho, and by definition,

Tcho = c′(B − β0)

[c′(X′X)−1Jcho(X′X)−1c]1/2

and

W = √
n

c′(X′X)−1(nĴcho − Jcho)(X
′X)−1c

c′(X′X)−1Jcho(X′X)−1c
.

If the regression errors are known to be conditionally homoskedastic and stationary with unknown autocovariances,
Rothenberg (p. 1006) derives the specific form of W as well as its variance. The estimator of the variance of W is

V̂W = 2
∑

k

( ∑
j rj δ̂j+k

)2

( ∑
k rk δ̂k

)2 ,
k = −(n − 1), . . . , 0, . . . (n − 1)

j = −(n − 1), . . . , 0, . . . (n − 1)

where δ̂j is the j th sample autocovariance as defined in Section 2, and

rj = n−1
n−|j |∑
t=1

xt xt+|j | j = −(n − 1), . . . , 0, . . . , n − 1

with xt = nX(X′X)−1c.
The parameters â and b̂ are defined as

â =
∑

k rk r̄k∑
k rk δ̂k

and b̂ =
∑

k rk q̄kk∑
k rk δ̂k

, k = −(n − 1), . . . , (n − 1)

where r̄k = (n − k)−1 ∑
t ẑt ẑt+k , and

q̄kk = trace[(X′X)−1(X′X−k)(X
′X)−1(nĴcho)]

− 2 × trace[(X′X)−1X′�̂X−k].
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In the equation for r̄k , ẑt is defined as the t th element of the n × 1 vector

ẑ = M�̂x√
n−1x′�̂x

,

where M is the n × n matrix In − X(X′X)−1X′, and �̂ the n × n estimated covariance matrix for U with (s, t) element
equal to δ̂|s−t |. The lagged cross product matrices X′X−k and X′�̂X−k are formed by summing over the n − |k| common
observations.
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